
www.manaraa.com

Declarative Secure Distributed Systems

Wenchao Zhou
supervised by Boon Thau Loo

CIS Department, University of Pennsylvania
Philadelphia, PA, 19104

wenchaoz@cis.upenn.edu

ABSTRACT
In the past decade, distributed systems have rapidly evolved and
gained significant traction in the research community, with an in-
creasing interest concentrated on developing and analyzing secure
distributed systems. In this paper, we present DS2 (Declarative
Secure Distributed Systems), a unified platform for specifying, im-
plementing, and analyzing large-scale secure distributed systems.
First, we propose the Secure Network Datalog (SeNDlog) language
that enables distributed systems and their security policies to be
specified and implemented within a same declarative framework.
We show that the existing semi-naı̈ve evaluation can be extended
to execute SeNDlog programs that incorporate authenticated com-
munication among untrusted nodes. Second, we demonstrate that
network provenance – the metadata that explains the derivation
of network state – can be naturally and concisely captured within
the DS2 system. We extend existing data models for provenance
to enable distribution at Internet-scale, and present techniques for
efficient and customizable maintenance and querying of network
provenance. Finally, the future research plans on secure prove-
nance and its integration with legacy applications are presented for
discussion.

1. INTRODUCTION
In the past decade, we have witnessed a proliferation of dis-

tributed systems deployed at Internet-scale for a variety of appli-
cation domains ranging from Internet monitoring infrastructures,
publish-subscribe systems, to content distribution networks. De-
spite their widespread usage, designing and implementing these
large-scale systems remains a challenge, in part because of the
sheer scale of deployment, but also resulting from emerging se-
curity threats.

In response, there have been several proposals aimed at evolv-
ing the underlying network infrastructure to provide better sup-
port for network diagnosis, flow analysis and accountability, all
of which are geared towards better tools for analyzing and secur-
ing networks. However, most of these mechanisms are typically
designed to tackle specific security threats at the underlying net-
work, without taking into account content distribution and infor-
mation processing at higher layers. In addition, they are often

.

afterthoughts, implemented and enforced in a different language
or environment from the networks that they are trying to protect,
hence raising the barrier for adoption.

As a step towards the integration of distributed systems with
security policies and analysis, we present DS2 (Declarative Se-
cure Distributed Systems), a unified declarative platform for spec-
ifying, implementing, and analyzing large-scale secure distributed
systems. Our work has largely been inspired by recent efforts at
using declarative languages that are aimed at simplifying the pro-
cess of system specification and implementation. Our work builds
upon and unifies three bodies of work: (1) declarative network-
ing [22, 21, 20], (2) logic-based trust management systems [11, 3,
17], and (3) database techniques for analyzing data computations
via the concept of provenance (or lineage) [2].

From a practical standpoint, this integration has several bene-
fits, ranging from fewer languages to learn, fewer sets of opti-
mizations, finer-grain control over the interaction between secu-
rity and network protocols, and the potential of crosslayer anal-
ysis and optimizations. Given its close tie with logic-based de-
ductive languages, runtime monitoring and checking of distributed
systems against formally specified properties are also achievable
in our framework [36], where high-level safety properties are au-
tomatically compiled from platform-independent formal specifica-
tions into distributed monitoring queries for execution.

Additionally, the unified declarative rule-based framework cap-
tures information flow as distributed queries, enabling natural sup-
port for acquiring, maintaining and querying provenance – the meta-
data that explains where a tuple originated and traversed, how it
was derived and what nodes are involved in the derivation [35].
Such capability is essential to a diverse set of network management
tasks such as performing network diagnostics, identifying mali-
cious users, and enforcing trust management policies. Each goal
has led to a series of application-specific proposals [28, 14, 32,
8, 16] that focus on improving network support for accountability
and providing efficient mechanisms to trace packets and informa-
tion flows through the Internet. We explore the data management
challenges posed by the distribution, querying, and maintenance
of network provenance at Internet-scale, and propose techniques to
enable the support for network provenance in the DS2 system.

We summarize our contributions as follows:
Unified framework for secure distributed systems: We propose
the Secure Network Datalog (SeNDlog) language that unifies logic-
based access control and declarative networking languages, hence
enabling distributed systems and their security policies to be spec-
ified within a unified declarative framework [34]. We demonstrate
the flexibility and compactness of SeNDlog via secure specifica-
tions of various distributed systems running at different network
layers. We further demonstrate in Reference [24, 23] that various

60

uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).VLDB 2010 PhD Workshop, September 13, 2010, Singapore



www.manaraa.com

security constructs can be customized and composed in a declara-
tive fashion, via the use of meta-programmability.
Maintenance and querying of network provenance: We in-
troduce the notion of network provenance [35], and demonstrate
its mapping to various use cases, including real-time diagnostics,
forensics, incremental view maintenance, and trust management.
We further present and demonstrate, based on the DS2 system, the
support for efficient distribution, maintenance and querying of net-
work provenance at Internet scale. As an ongoing project, we ac-
tively investigate the techniques for enforcing the integrity and con-
fidentiality of provenance.

The paper is organized as follows. In Section 2, we first present
as background the declarative networking language. Section 3 in-
troduces the unified SeNDlog language, and illustrates its usage via
a series of example secure distributed systems. In Section 4, we
present the maintenance and querying of network provenance, and
show its natural mapping to use cases in a variety of application
scenarios. We discuss our ongoing work and potential future re-
search directions in Section 5 and conclude in Section 6.

2. BACKGROUND
Given DS2’s use of declarative networking, we briefly introduce

declarative networking and the query language that will be used as
a basis for enabling network provenance. The high level goal of
declarative networks [22, 21, 20] is to build extensible network ar-
chitectures that achieve a good balance of flexibility, performance,
and safety. Declarative networks are specified using Network Data-
log (NDlog), a distributed recursive query language used for query-
ing network graphs. NDlog queries are executed using a distributed
query processor to implement the network protocols and are contin-
uously maintained as distributed views over existing network and
host state. Declarative queries such as NDlog are a natural and com-
pact way to implement a variety of routing protocols and overlay
networks. For example, traditional routing protocols can be ex-
pressed in a few lines of code [22], and the Chord [31] distributed
hash table in 47 lines of code [21]. When compiled and executed,
these declarative networks perform efficiently relative to imperative
implementations.

The techniques proposed in this paper can be generally realized
using any sufficiently expressive distributed query processor. The
advantage of using declarative networking is that several robust im-
plementations exist that can be straightforwardly leveraged to de-
velop DS2. Moreover, since distributed protocols can themselves
be expressed as declarative statements, declarative networking rep-
resents a natural means for unifying the synthesis and analysis of
distributed protocols.

The declarative NDlog language used by DS2 is based on Data-
log [26]. A Datalog program consists of a set of rules. Each rule
has the form p :- q1, q2, ..., qn., which can be read infor-
mally as “q1 and q2 and ... and qn imply p”. Here, p is the
head of the rule, and q1, q2,...,qn is a list of literals that consti-
tutes the body of the rule. Literals are either predicates with at-
tributes (which are bound to variables or constants by the query),
or Boolean expressions that involve function symbols (including
arithmetic) applied to attributes. Predicates in NDlog are typically
relations, although in some cases they may represent functions.
Commas are interpreted as logical conjunctions (AND). The names
of predicates, function symbols, and constants begin with a lower-
case letter, while variable names begin with an uppercase letter.

NDlog is a distributed variant of the traditional Datalog, primar-
ily designed for expressing distributed (recursive) computations.
NDlog supports a location specifier in each predicate, expressed
with the @ symbol followed by an attribute. This attribute denotes

the location where the tuple resides (e.g., tuple link(@S,D,C) is
located at node S, as indicated by its first field).

sp1 pathCost(@S,D,C) :- link(@S,D,C).
sp2 pathCost(@S,D,C1+C2) :- link(@Z,S,C1),

bestPathCost(@Z,D,C2).
sp3 bestPathCost(@S,D,min<C>) :- pathCost(@S,D,C).

Figure 1: The MINCOST program in NDlog

Consider the three-rule MINCOST program shown in Figure 1.
MINCOST computes the best path cost between each pair of nodes
in a network. Rule sp1 and sp2 specify the definition of the derived
tuple pathCost. Rule sp1 computes all one-hop path cost based
on the base tuples from the link relation. Rule sp2 expresses that
“if there is a link from S to Z of cost C1, and the best path cost from
Z to D is C2, then there is a path from S to D with cost C1+C2”1.
Rule sp3 aggregates all paths with the same pair of source and
destination to compute the best path cost. By modifying this simple
example, we can construct more complex routing protocols, such as
the distance vector and path vector routing protocols.

When executed, MINCOST forms a distributed stream compu-
tation where streams of link, pathCost, and bestPathCost tu-
ples are joined at different nodes to compute the best path costs. To
maintain tuples as the inputs to the rules are updated (e.g., insertion
of link tuples), these queries are continuously executed.

3. SECURE NETWORK DATALOG
SeNDlog is based on a unification of logic-based access lan-

guages and distributed recursive query languages for declarative
networking. In this section, we introduce its key langurage features
and the query processing techniques that we have adopted in DS2.
An example secure protocol is presented to illustrate the flexibility
and compactness of SeNDlog.

3.1 Language Features
The SeNDlog language unifies Binder and NDlog with the fol-

lowing goals in mind. First, the language should maintain the fea-
tures of Binder and NDlog, and remain compatible with these two
languages. Second, SeNDlog must support authenticated commu-
nication and enable the differentiation of principals according to
their roles in trusted and untrusted networked environments. We
have chosen Binder for its simple language design and similarities
to NDlog. Despite its simplicity, we show that the unified language
can support a variety of networked systems and security policies.

SeNDlog extends the basic declarative networking language by
adding support for authenticated communication. SeNDlog inte-
grates two commonly used constructs in distributed trust manage-
ment languages: (1) the notion of context to represent a principal
in a distributed environment and (2) a specific operator says that
abstracts away the details of authentication [3, 15].

To demonstrate the language features of SeNDlog, we present the
authenticated version of the MINCOST example shown in Figure 1:

At S:
sp1 pathCost(S,D,C) :- link(S,D,C).
sp2 pathCost(Z,D,C1+C2)@Z :- link(S,Z,C1),

bestPathCost(S,D,C2).
sp3 bestPathCost(S,D,min<C>) :- Z says pathCost(S,D,C).

Figure 2: Authenticated MINCOST program in SeNDlog

The says primitive in rule sp3 specifies that the authenticity of
the received pathCost tuple should be checked, ensuring that it
originated from Z.
1In this example, we assume links are symmetric, i.e. if there is a
link from S to D with cost C, then a link from D to S with the same
cost C also exists.

61



www.manaraa.com

Communication context: Due to the distributed nature of net-
work queries, a principal does not have control over rule execution
at other nodes. SeNDlog achieves secure distributed query process-
ing by allowing programs to inter-operate correctly and securely via
the export and import of rules and derived tuples across contexts.

In the above example, the rules are in the context of S, where S is
a variable assigned upon rule installation. In a distributed environ-
ment, S represents the network address of a node. In a multi-user
multi-layered network environment, S can further include a user-
name and network identifier.
Import/export predicates: The SeNDlog language allows dif-
ferent contexts to communicate by importing and exporting tuples.
The communication serves two purposes: (1) to disseminate main-
tenance messages as part of the protocol updates, and (2) to dis-
tribute the derivation of security decisions.

During the evaluation of SeNDlog rules, derived tuples can be
communicated among contexts via the use of import predicates and
export predicates. An import predicate is of the form “N says p”,
indicating that principal N asserts the predicate p. The use of ex-
port predicates provides confidentiality by exporting tuples only to
specified principals. An export predicate is of the form “N says

p@X”, where principal N exports the predicate p to principal X. In
rule sp2, node S exports pathCost tuples to node Z (as a short-
hand, “S says” is omitted as S is where the rule resides).

3.2 Secure Query Processing
We extend the Pipelined Semi-naı̈ve (PSN) evaluation [20] pro-

posed for declarative networks, to incorporate authenticated com-
munication into query execution. We start with a description of
our proposed Secure Pipelined Semi-naı̈ve (SPSN) evaluation, fol-
lowed by a brief overview of the workflow architecture.
Secure Pipelined Semi-naı̈ve Evaluation: Consider the follow-
ing SeNDlog rule in the context of principal p:
a :- d1, ..., dn, b1, ..., bm, p1 says a1, p2 says a2..., po says ao.

where there are n derived predicates (d1, ..., dn), m base predi-
cates (b1, ..., bm), and o additional import predicates of the form
“pk says ak” in the rule body, and an export predicate in the rule
head. For each kth import predicate, an authenticated delta rule is
generated as follows:
p says4a :- d1, ..., dn, b1, ..., bm,
. p1 says a1, ..., pk says4ak, ..., po says ao.
The delta rule uses says to authenticate new ak tuples imported
from pk and sign any derived a tuples by the local principal p.

In SPSN, tuples are processed tuple-at-time in a pipelined fash-
ion. Each node maintains a FIFO queue (ordered by arrival times-
tamp) of new input tuples. Each new tuple is dequeued and is used
as input to its respective delta rule. The execution of a delta rule
may generate new tuples which are either inserted into the local
queue or sent to a remote node for further execution.
Dataflow Architecture: Figure 3 shows an example dataflow that
is automatically generated from SeNDlog rules. Queries are com-
piled and executed as distributed dataflows and share a similar ex-
ecution model with the Click modular router [13]. At the edges
of the dataflow, there are several network processing operators (de-
noted by Network-In and Network-Out) used to process incom-
ing and outgoing messages. Flow control operators such as Queue,
Mux, Demux, and TimedPullPush support buffering, multiplexing,
demultiplexing, and periodic flow of tuples within the dataflow.

At the core of the dataflow are rule strands shown within the
gray box, which are directly compiled from the SPSN delta rules
into a series of relational operators such as joins, aggregations, se-
lections, and projections. Messages flowing among dataflows are

Network In

Mux Queue

Receive
Demux

RoundR
obin

IP

Overlay

SigChecker

Discard

LocSpec
Demux

QueueNetwork Out

SigGenerater

SigGenerater

TimedPullPush

TimedPullPush
Overlay

Recv
Unwrap

Local

yes

no

SigChecker yes

Overlay
Send Wrap

……

Figure 3: Datalow execution plan for a single node

executed at different nodes, resulting in updates to local tables, or
query results that are returned to the hosts that issued the queries.

Specifically, two additional operators (i.e. SigGenerator and
SigChecker) are introduced to support authenticated communi-
cation. Any outgoing tuple t that requires authentication is com-
municated as a (p,s,t) triplet, where p corresponds to the source
principal, and s is the signature generated by signing the message
digest (essentially a cryptographic hash of t). At the recipient node,
the SigChecker operator authenticates incoming (p,s,t) triplets
by verifying that the signature s matches the corresponding mes-
sage digest. Note that key management is an orthogonal problem
that is beyond the scope of the paper.

3.3 Example Secure Protocol
To illustrate the flexibility and compactness of SeNDlog, we

present an example secure protocol based on the Chord Distributed
Hash Table (DHT) [31]. Our modifications avoid a security weak-
ness in a DHT where malicious nodes can occupy a large range of
the key space. There are three types of nodes: (1) a new node NI

joining the chord network, (2) the certificate authority CA, and (3)
the landmark node LI. Each node runs its respective set of rules:
At NI,
ni1 requestCert(NI,K)@CA :- startNetwork(NI),

publicKey(NI,K), MyCA(NI,CA).
ni2 nodeID(NI,N) :- CA says nodeIDCert(NI,N).
ni3 CA says nodeIDCert(NI,N)@LI :-

CA says nodeIDCert(NI,N), landmark(NI,LI).

At CA,
ca1 nodeIDCert(NI,N)@NI :- NI says requestCert(NI,K),

secret(CA,NI,S), N=f_generateID(K,S).

At LI,
li1 acceptJoinRequest(NI) :- CA says nodeIDCert(NI,N).

Figure 4: Secure Process of a Node Joining the Chord Network

In rule ni1, a node NI that wishes to join the Chord network ex-
ports a requestCert tuple to its CA to request a nodeID certificate.
Upon receiving the request, the CA generates a nodeIDCert(NI,N)
tuple containing the nodeID (indicated by N) and its certificate,
which is then exported back to node NI. Upon importing the
nodeIDCert tuple from the CA, using rule ni2, node NI initial-
izes its local node identifier. It also forwards the nodeIDCert to
its landmark node LI in order to join the chord network. The land-
mark node LI verifies the authenticity of nodeIDCert and derives
an acceptJoinRequest(NI) tuple, indicating the request from
node NI is accepted.

In Reference [34], we present more example secure protocols
that run at different network layers, ranging from the path-vector
routing protocol, the PIER [9] distributed query processor, and an
authenticated MapReduce execution. In addition, we further demon-
strate the usability of SeNDlog in the A3 [29] (Application-Aware

62



www.manaraa.com

Anonymity) system, where SeNDlog is extensively used to leverage
path selection, and secure path instantiation.

4. NETWORK PROVENANCE
In database systems, data provenance [2] is a well-known con-

cept, primarily used to answer questions concerning how query re-
sults are derived and which data sources they come from. A similar
notion – network provenance [35] – is emerging in the network-
ing domain, describing the history and derivations of network state
resulting from the execution of a distributed protocol.

We conceptualize and develop, based on the DS2 system, a plat-
form that enables generic provenance support. It provides a flexible
framework for distributed querying of network meta-data, allowing
provenance to be represented in various format (derivation trees,
binary decision diagrams [1], algebraic polynomials, etc.).

4.1 Provenance Maintenance
We model provenance as an acyclic graph G(V,E). The vertex

set V consists of tuple vertices and rule execution vertices. Each
tuple vertex in the graph is either a base tuple or a computation
result, and each rule execution vertex represents an instance of a
rule execution given a set of input tuples. The edge set E represents
dataflows between tuples and rule execution vertices. To uniquely
identify each vertex in the graph, we assign a vertex ID (VID) to
each tuple vertex and a rule ID (RID) to each rule execution vertex.

To illustrate, consider an example network consisting of three
nodes a, b and c connected by three bi-directional links (a,b),
(a,c) and (b,c) with costs 3, 5 and 2 respectively. Figure 5
shows the provenance graph for a specific derived tuple,
bestPathCost(@a,c,5). In the figure, ovals represent the rule
execution vertices and rectangles depict tuple vertices. The graph
encodes how tuples are derived during the execution of the MIN-
COST protocol. For instance, bestpathCost(@a,c,5) is gener-
ated from rule sp3 at node a taking pathCost(@a,c,5) as the
input. To trace further, pathCost(@a,c,5) has two derivations,
i.e. the locally derivable one-hop path a→ c and the two-hop path
a→ b→ c that requires the distributed join (in rule sp2) at b.
Storage Model: Our storage model builds upon current work on
representing provenance information as relational tables [10, 6],
with extensions to support distributed storage and querying. In
DS2, provenance information is stored in the network using two
tables, prov and ruleExec, that are distributed and partitioned
across all nodes in the network.

The prov table maintains provenance information, where each
entry in the relation represents a direct derivation of a tuple. Specif-
ically, a prov entry is of the form prov(@Loc,VID,RID,RLoc),
with VID and RID as its keys, indicating that the tuple vertex VID

located at node Loc is directly derivable from the rule execution
vertex RID for a rule that resides at RLoc.

A separate table, ruleExec(@RLoc,RID,R,VIDList), stores
the actual meta-data of a rule execution (at location RLoc). For a
given RID, the table stores the actual rule identifier R, as well as the
VIDs for all the input tuples used in the rule derivation.
Distributed Maintenance: Given a declarative networking pro-
gram, an automatic rewrite [35] is performed to augment the origi-
nal program with additional queries for maintaining provenance in-
formation. Essentially, provenance information (i.e. the prov and
ruleExec tables) are defined as views of base and derived tuples.
As DS2 adopts SPSN – a variant of PSN, views are incrementally
recomputed due to new insertions or deletions. Each new deriva-
tion or rule execution automatically results in the creation of new
prov and ruleExec entries. Similarly, whenever a base tuple is
deleted, all derivations resulted from NDlog rules that depend on

the base tuple in the program are incrementally deleted, resulting
in cascaded deletions of the respective prov and ruleExec entries
in the provenance graphs of deleted tuples.

4.2 Provenance Querying
Network provenance can be queried by issuing distributed queries.

These queries traverse provenance graphs (in the form the prov and
ruleExec tables) in a distributed fashion, returning results to the
querying node.

The following NDlog program demonstrates a generic distributed
graph traversal operation on tables prov and ruleExec. The en-
tire program is written in ten NDlog rules: two base rules (edb1
and c0), and two pairs of four rules for recursively querying the
prov (idb1-idb4) and ruleExec (rv-rv4; not shown) tables.
The rules are continuous, long-running queries that are installed at
every DS2 node for handling distributed provenance queries.
// Base case
edb1 eProvResults(@Ret,QID,VID,Prov) :-

prov(@X,VID,RID,RLoc), eProvQuery(@X,QID,VID,Ret),
RID==NULL, Prov=f_pEDB(VID).

// Count number of children for each VID
c0 numChild(@X,VID,COUNT<*>) :- prov(@X,VID,RID,RLoc).

// Initializing Buffer
idb1 pResultTmp(@X,QID,Ret,VID,f_empty()) :-

prov(@X,VID,RID,RLoc),
eProvQuery(@X,QID,VID,Ret), RID!=NULL.

// Recursive case
idb2 eRuleQuery(@RLoc,RQID,RID,X) :-

prov(@X,VID,RID,RLoc),
eProvQuery(@X,QID,VID,Ret), RQID=f_sha1(QID+RID).

// Buffer sub-results
idb3 pResultTmp(@X,QID,Ret,VID,Buf) :-

pResultTmp(@X,QID,Ret,VID,Buf1),
eRuleResults(@X,RQID,RID,Prov),
RQID=f_sha1(QID+RID), Buf=f_concat(Buf1,Prov).

// Calculate and return results
idb4 eProvResults(@Ret,QID,VID,Prov) :-

pResultTmp(@X,QID,Ret,VID,Buf), numChild(@X,VID,C),
C=f_size(Buf), Prov=f_pIDB(Buf,VID,X).

The initial provenance query is indicated by the event
eProvQuery(@X,QID,VID,Ret), where node Ret issues a query
(uniquely identified by QID) to retrieve the provenance information
of tuple VID stored at node X.

Rule edb1 is the base case and applies when the tuple VID is
a base tuple (EDB), as indicated by the fact that it has no associ-
ated rule execution instance (i.e., RID is null). In such cases, the
provenance information is f pEDB(VID) – the result of applying
the user-defined function for EDBs to VID.

Rule idb1 initializes the pResultTmp table, which is later used
to buffer intermediate query results. Rule idb2 represents the re-
cursive case in which the prov table is retrieved. Each entry with
matching VID in the prov table indicates a rule execution instance
that leads to the derivation of VID. These rule execution instances
are retrieved and buffered in pResultTmp table. Rule idb3 is ap-
plied when all children derivations have returned with the prove-
nance information. The resulting provenance information is then
combined in rule idb4 using the user-defined f pIDB function and
the results are returned to the query node.

Additional four rules rv1-rv4 (similar to idb1-idb4) perform
a similar traversal of the ruleExec tables. We omit these rules
due to space constraints. The intuition behind these rules is that the
user recursively traverses prov and ruleExec tables across nodes
until the entire provenance tree has been obtained. An additional
user-defined function f pRULE enables the user to customize how
the inputs to the rule can be combined in the provenance tree.

63



www.manaraa.com

link(@b,c,2)

VID1=SHA1("link"+b+c+2)

link(@b,a,3)

VID2=SHA1("link"+b+a+3)

link(@a,c,5)

VID3=SHA1("link"+a+c+5)

pathCost(@b,c,2)

VID4=SHA1("pathCost"+b+c+2)

pathCost(@a,c,5)

VID5=SHA1("pathCost"+a+c+5)

sp2@b

RID3=SHA1("sp2"+b+VID2+VID6)

bestPathCost(@b,c,2)

VID6=SHA1("bestPathCost"+b+c+2)

bestPathCost(@a,c,5)

VID7=SHA1("bestPathCost"+a+c+5)
sp3@a

RID5=SHA1("sp3"+a+VID5)

sp1@b

RID1=SHA1("sp1"+b+VID1)

sp1@a

RID2=SHA1("sp1"+a+VID3)

sp3@b

RID4=SHA1("sp3"+b+VID4)

Figure 5: The provenance graph of the tuple bestPathCost(@a,c,5) derived from the execution of the MINCOST program. Ovals represent
rule execution vertexes and rectangles denote tuple vertexes.

Customization: Users may customize provenance queries to meet
various application requirements, by configuring the three user-
defined functions, namely f pEDB, f pIDB, and f pRule. The un-
derlying NDlog program (shown above) used for querying prove-
nance is sufficiently general to support a diverse set of application
requirements.

As an example, consider a query that returns the number of pos-
sible derivations of a given tuple. For each base tuple, f pEDB is
configured to return an integer “1”, indicating each of the base tu-
ples has one derivation. For each intermediate derived tuple, the
number of its derivations (i.e. the result of f pIDB) can be calcu-
lated as the sum of the sub-results returned by the direct derivations.
For rule execution instances, the evaluation result of the f pRule

functioin is the product of the sub-results.
Optimizations: We further investigate a variety of query opti-
mization techniques [35], including a) caching previously acquired
provenance to allow subsequent queries to leverage the results of
prior ones; b) altering traversal orders in provenance graph to re-
duce bandwidth consumptions for threshold-based queries; and c)
applying lossy condensation of provenance [18], while still main-
taining sufficient information for applications such as incremental
view maintenance and trust management.

4.3 Use Cases of Provenance
The capability of efficient maintenance and customizable query-

ing of network provenance enables a variety of applications in de-
veloping and analyzing secure distributed systems. In this section,
we survey a (non-exhaustive) list of potential use cases of network
provenance:
Diagnosis and forensics: In addition to trust management, prove-
nance information is useful for debugging and error detection. For
example, tracing backwards in a network-level provenance graph
may yield the discovery of the (possibly malicious) causes of sus-
picious query results. In all scenarios, the querying of provenance
can be automatically triggered by an anomalous behavior (e.g., a
spike in traffic) that is detectable using a continuous query over
existing network state.
Efficient incremental view maintenance: Once incorrect or un-
trusted data is identified, provenance enables the efficient propaga-
tion of corrections to the appropriate destinations, without impos-
ing expensive recomputation.
Provenance-based trust management: A secure query processor
may decide to process or discard an incoming tuple based on its
derivation. For instance, a node may make the decision based on
its trust relationship with the tuple’s original owner. Additionally,
provenance allows the adoption of a quantitative approach for trust
management: a derived tuple is assigned a trust value evaluated
from its provenance, based on which the decision is concluded. In-
terestingly, the quantitative approach is computable and customiz-
able by representing provenance in an algebraic form.

5. FUTURE WORK
Having presented our unified declarative framework for specify-

ing and implementing secure distributed systems and its capabil-
ity of supporting efficient provenance maintenance and querying.
We briefly discuss our future research plans on integrating security
guarantees into the provenance support and the interaction between
DS2 and legacy applications that are not necessarily implemented
using our framework.

5.1 Secure Provenance
Provenance has wide applications in network diagnosis, flow

analysis and trust management, where the systems are usually as-
sumed to be running in a potentially adversarial environment. There-
fore, it is crucially important to enforce the integrity and confiden-
tiality of network provenance.
Threat Model and Desired Security Guarantees: We enforce
the integrity of provenance by assuring that malicious manipula-
tion of provenance will be eventually detected. In particular, we
currently consider the following list of security threats:

• T1 – Forge updates of base tuples: A compromised node may
forge fake updates of the base tuples maintained in its local
database. For instance, in a BGP system, a malicious AS may
falsely announces the origination of an arbitrary prefix.

• T2 – Deviate from expected behaviors: In the execution of a dis-
tributed system, a misbehaving node may intentionally deviate
from its expected behaviors. Without noticing the deviation, a
system administrator may draw false conclusions from retrieved
provenance, even if it faithfully captures the derivation of tuples.

• T3 – Manipulate received provenance: When a provenance query
is issued, a compromised node involving in the distributed execu-
tion of the query can covertly manipulate its received provenance
data, and return a framed results back to the query issuer.

• T4 – Ignore/replay updates of provenance: A compromised node
may ignore the insertion / deletion of a tuple’s alternative deriva-
tions. On the other hand, a replay attack can be easily launched
by leveraging a stale update.

In addition to integrity, another aspect of secure provenance is
in the form of confidentiality. A naı̈ve implementation of prove-
nance may result in information leakage by exposing sensitive in-
formation (e.g. routing policies in an inter-domain routing proto-
col) to the recipients of the tuples, some of which are not supposed
to access to these information. Therefore, provenance information
should be hidden (encrypted) based on roles, security levels or cus-
tomized requirements.
Preliminary Solution - Integrity: Noting that the internal faults –
threats T1 and T2 – are not observable from other nodes, we make
two assumptions: 1) Each base tuples is tagged with a certificate
authorized by a trusted certificate authority; and 2) Each partici-
pating node’s expected behavior can be modeled as a deterministic

64



www.manaraa.com

state machine2, and is publicly known as a reference implementa-
tion. Assumption 1 allows nodes to prevent forged base tuples by
checking the tagged certificates, whereas Assumption 2 enables one
to verify, by leveraging deterministic replay, whether nodes strictly
adhere to their expected behaviors in deriving a given tuple.

In addition, inspired by PeerReview [7], we maintain a linear
event log of the incoming and outgoing communication at each
node. Mechanisms proposed in PeerReview ensure that the logs are
tamper-evident (thus preventing threat T3), and consistent – node
cannot deny having received provenance updates (thus preventing
threat T4). Once an violation is discovered, verifiable evidences are
generated against the faulty nodes.
Preliminary Solution - Confidentiality: To enforce the confiden-
tiality of provenance, we explore an existing approach [25] to sup-
port information hiding (fine-granularity confidentiality control) in
provenance. This approach was previously applied to leverage ac-
cess controls over sensitive information, which is maintained in a
published XML file, by partially encrypting the file in a key-based
tree-structured architecture.

5.2 Integration with Legacy Applications
Another direction we are actively exploring is to integrate DS2

more closely with legacy applications, which are not necessarily
implemented within our declarative framework. We would like to
explore approaches that allow seamless support for legacy appli-
cations, with minimal efforts required from users. For instance, it
would be preferable if it requires no modification to the source code
of the applications or the operating systems.
Preliminary Solution: One feasible approach is to intercept a set
of related system state and cross-node communications, and feed
these information as streams of base tuples to the DS2 system.

Previous work has extensively explored mechanisms for acquir-
ing user-specified system state from runtime systems. For instance,
MaceMC [12] and P2 Monitor [30] require users to implement
their systems using specific languages that can automatically cap-
ture system state; In Pip [27] and X-Trace [5], the source code of
a target application needs to be modified or annotated. D3S [19]
and MODIST [33] treat target applications as black box, and inject
monitors in the underlying operating systems (or a middle-ware) to
intercept user-specified system state.

Once the system state are captured, users can subsequently spec-
ify high-level logical derivation rules within our declarative plat-
form, and leverage provenance information, which can be efficiently
maintained and queried within DS2, to perform system analysis.

6. CONCLUSION
In this paper, we present DS2, a unified declarative platform

for specifying, implementing and analyzing large-scale secure dis-
tributed systems, with built-in support for efficient provenance main-
tenance and querying. Our contributions are: (1) We introduce
a unified language for distributed systems and security policies,
and we show secure query processing techniques for distributed
settings; (2) The notion of network provenance is conceptualized
and developed within DS2, with flexibility for query customization
and optimizations. We also discuss future research plans on secure
provenance and DS2’s integration with legacy applications.

Our preliminary evaluation [34, 35] on LAN and the PlanetLab
testbed has demonstrated that the authenticated communication, as
well as the provenance support, incurs little overhead. An initial
DS2 prototype is available as open-source [4].

2Specifically in our DS2 system, the deterministic state machine
can be presented as a SeNDlog program.

7. REFERENCES
[1] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision

diagrams. ACM Computing Surveys, 24(3), 1992.
[2] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of

data provenance. In ICDT, 2001.
[3] J. DeTreville. Binder: A logic-based security language. In IEEE S&P, 2002.
[4] DS2 open-source implementation.

http://netdb.cis.upenn.edu/rapidnet/downloads.html.
[5] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-Trace: A

Pervasive Network Tracing Framework. In NSDI, 2007.
[6] B. Glavic and G. Alonso. Perm: Processing provenance and data on the same

data model through query rewriting. In ICDE, 2009.
[7] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Practical

Accountability for Distributed Systems. In SOSP, 2007.
[8] M. Huang, A. Bavier, and L. Peterson. PlanetFlow: Maintaining accountability

for network services. Communications of the ACM, 32(6), 1989.
[9] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.

Querying the Internet with PIER. In VLDB, 2003.
[10] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir. ORCHESTRA: Rapid,

collaborative sharing of dynamic data. In CIDR, January 2005.
[11] T. Jim. SD3: A Trust Management System With Certified Evaluation. In IEEE

S&P, May 2001.
[12] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, Death, and the

Critical Transition: Finding Liveness Bugs in Systems Code. In NSDI, 2007.
[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click

Modular Router. ACM TOCS, 18(3), 2000.
[14] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer. Building a

time machine for efficient recording and retrieval of high-volume network
traffic. In IMC, 2005.

[15] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in
Distributed Systems: Theory and Practice. ACM TOCS, 10(4), 1992.

[16] P. Laskowski and J. Chuang. Network monitors and contracting systems:
Competition and innovation. In SIGCOMM, 2007.

[17] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A logic-based
approach to distributed authorization. ACM TISSEC, 6(1), 2003.

[18] M. Liu, W. Zhou, N. Taylor, Z. Ives, and B. T. Loo. Recursive Computation of
Regions and Connectivity in Networks. In ICDE, 2009.

[19] X. Liu, Z. Guo, X. Wang, F. Chen, X. L. J. Tang, M. Wu, M. F. Kaashoek, and
Z. Zhang. D3S: Debugging Deployed Distributed Systems. In NSDI, 2008.

[20] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking: Language,
Execution and Optimization. In SIGMOD, June 2006.

[21] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.
Implementing Declarative Overlays. In SOSP, 2005.

[22] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
Routing: Extensible Routing with Declarative Queries. In SIGCOMM, 2005.

[23] W. R. Marczak, S. S. Huang, M. Bravenboer, M. Sherr, B. T. Loo, and M. Aref.
SecureBlox: Customizable Secure Distributed Data Processing. In SIGMOD,
2010.

[24] W. R. Marczak, D. Zook, W. Zhou, M. Aref, and B. T. Loo. Declarative
reconfigurable trust management. In CIDR, 2009.

[25] G. Miklau and D. Suciu. Controlling access to published data using
cryptography. In VLDB, 2003.

[26] R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive
Database Systems. Journal of Logic Programming, 23(2), 1993.

[27] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and
A. Vahdat. Pip: Detecting the Unexpected in Distributed Systems. In NSDI,
2006.

[28] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support
for IP traceback. In SIGCOMM, 2000.

[29] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T. Loo, and M. Blaze. A3: An
Extensible Platform for Application-Aware Anonymity. In NDSS, 2010.

[30] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel. Using Queries for
Distributed Monitoring and Forensics. In EuroSys, 2006.

[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In SIGCOMM,
2001.

[32] Y. Xie, V. Sekar, M. Reiter, and H. Zhang. Forensic analysis for epidemic
attacks in federated networks. In ICNP, 2006.

[33] J. Yang, T. Chen, M. Wu, Z. Wu, X. Liu, H. Lin, M. Yang, F. Long, L. Zhang,
and L. Zhou. MODIST: Transparent Model Checking of Unmodified
Distributed Systems. In NSDI, 2009.

[34] W. Zhou, Y. Mao, B. T. Loo, and M. Abadi. Unified Declarative Platform for
Secure Networked Information Systems. In ICDE, 2009.

[35] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient querying and
maintenance of network provenance at internet-scale. In SIGMOD, 2010.

[36] W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. DMaC: Distributed Monitoring
and Checking. In RV, 2009.

65

http://netdb.cis.upenn.edu/rapidnet/downloads.html



